A unified, integral construction for coordinates over closed curves
نویسندگان
چکیده
We propose a simple generalization of Shephard’s interpolation to piecewise smooth, convex closed curves that yields a family of boundary interpolants with linear precision. Two instances of this family reduce to previously known interpolants: one based on a generalization of Wachspress coordinates to smooth curves and the other an integral version of mean value coordinates for smooth curves. A third instance of this family yields a previously unknown generalization of discrete harmonic coordinates to smooth curves. For closed, piecewise linear curves, we prove that our interpolant reproduces a general family of barycentric coordinates considered by Floater, Hormann and Kós that includes Wachspress coordinates, mean value coordinates and discrete harmonic coordinates.
منابع مشابه
Efficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملAN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS
In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.
متن کاملTENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کاملThe Cone of Curves of K3 Surfaces Revisited
The following theorem was proved in [Kov94] over the complex numbers. It turns out that the proof given there works with very small adjustments in arbitrary characteristic. The purpose of this note is to verify this, that is, to prove the following. Theorem 1.1. Let X be a K3 surface of Picard number at least three over an algebraically closed field of arbitrary characteristic. Then one of the ...
متن کاملAssessment of uncertainty for coal quality-tonnage curves through minimum spatial cross-correlation simulation
Coal quality-tonnage curves are helpful tools in optimum mine planning and can be estimated using geostatistical simulation methods. In the presence of spatially cross-correlated variables, traditional co-simulation methods are impractical and time consuming. This paper investigates a factor simulation approach based on minimization of spatial cross-correlations with the objective of modeling s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Aided Geometric Design
دوره 24 شماره
صفحات -
تاریخ انتشار 2007